#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Souvislost mezi kostní a cévní kalcifikací: důkazy z klinických studií


Autoři: Szulc Pawel
Působiště autorů: INSERM UMR 1033, University of Lyon, France
Vyšlo v časopise: Clinical Osteology 2019; 24(4): 178-190
Kategorie: Přehledové články

Souhrn

Predošlá významná osteoporotická zlomenina a v menšej miere nižšia hustota kostného minerálu (BMD – Bone Mineral Density) súvisí s vyšším kardiovaskulárnym rizikom. Kardiovaskulárne ochorenia sú spojené s vyšším rizikom závažných osteoporotických zlomenín. Kalcifikáciu brušnej aorty (AAC – Abdominal Aortic Calcification) je možné vyhodnotiť pomocou tzv. Kauppilovho semikvantitatívneho skóre. Závažná AAC je spojená s vyšším rizikom zlomenín bedra a stavca, menej s vyšším rizikom iných zlomenín a nižší BMD. Väčší pomer intima-média karotíd bol v niektorých, ale nie vo všetkých štúdiách spojovaný s nižšou BMD. Kalcifikované karotické pláty boli často spojované s nižšou BMD a vyšším rizikom fraktúry. Závažná kalcifikácia koronárnych artérií súvisí predovšetkým s nižšou objemovou BMD trabekulárnej kosti (nie kortikálnej) u žien v menopauze (nevzťahuje sa na mužov). U pacientov/pacientiek s ťažkou osteoporózou teda môže jestvovať vyššie riziko kardiovaskulárneho ochorenia a naopak, pre klinické liečenie týchto pacientov ale nie sú k dispozícii žiadne oficiálne pokyny.

Klíčová slova:

kalcifikácia brušnej aorty – kalcifikácia karotídy – kalcifikácia koronárnych artérií – kardiovaskulárne ochorenia – osteoporotická zlomenina – osteoporóza


Zdroje
  1. Veronese N, Stubbs B, Crepaldi G et al. Relationship between Low Bone Mineral Density and Fractures With Incident Cardiovascular Disease: A Systematic Review and Meta-Analysis. J Bone Miner Res 2017; 32(5): 1126–1135. Available on: <http://dx.doi.org/10.1002/jbmr.3089>.
  2. Lee FY, Chen WK, Lin CL et al. Risk of aortic dissection, congestive heart failure, pneumonia and acute respiratory distress syndrome in patients with clinical vertebral fracture: a nationwide population-based cohort study in Taiwan. BMJ Open 2019; 9(11): e030939. Available on: <http://dx.doi.org/10.1136/bmjopen-2019–030939>.
  3. Tankó LB, Christiansen C, Cox DA et al. Relationship between osteoporosis and cardiovascular disease in postmenopausal women. J Bone Miner Res 2005; 20: 1912–1920. Available on: <http://dx.doi.org/10.1359/JBMR.050711>. Erratum in J Bone Miner Res 2006; 21(2):352.
  4. Pedersen AB, Ehrenstein V, Szépligeti SK et al. Hip Fracture, Comorbidity, and the Risk of Myocardial Infarction and Stroke: A Danish Nationwide Cohort Study, 1995–2015. J Bone Miner Res 2017; 32(12): 2339–2346. Available on: <http://dx.doi.org/10.1002/jbmr.3242>.
  5. Chiang CH, Liu CJ, Chen PJ ET al. Hip fracture and risk of acute myocardial infarction: a nationwide study. J Bone Miner Res 2013 28(2): 404–411. Available on: <http://dx.doi.org/10.1002/jbmr.1714>.
  6. Dodd AC, Bulka C, Jahangir A et al. Predictors of 30-day mortality following hip/pelvis fractures. Orthop Traumatol Surg Res 2016; 102(6):707–10. Available on: <http://dx.doi.org/10.1016/j.otsr.2016.05.016>.
  7. Ye C, Xu M, Wang S et al. Decreased Bone Mineral Density Is an Independent Predictor for the Development of Atherosclerosis: A Systematic Review and Meta-Analysis. PLoS One 2016; 11(5): e0154740. Available on: <http://dx.doi.org/10.1371/journal.pone.0154740>.
  8. Nordström A, Eriksson M, Stegmayr B et al. Low bone mineral density is an independent risk factor for stroke and death. Cerebrovasc Dis 2010; 29(2): 130–136. Available on: <http://dx.doi.org/10.1159/000262308>.
  9. Fohtung RB, Brown DL, Koh WJ et al. Bone Mineral Density and Risk of Heart Failure in Older Adults: The Cardiovascular Health Study. J Am Heart Assoc 2017; 6(3). pii: e004344. Available on: <http://dx.doi.org/10.1161/JAHA.116.004344>.
  10. Fiechter M, Bengs S, Roggo A et al. Association between vertebral bone mineral density, myocardial perfusion, and long-term cardiovascular outcomes: A sex-specific analysis. J Nucl Cardiol 2019. Available on: <http://dx.doi.org/10.1007/s12350–019–01802-z>.
  11. Browner WS, Pressman AR, Nevitt MC et al. Association between low bone density and stroke in elderly women. The study of osteoporotic fractures. Stroke 1993; 24: 940–946. Available on: <http://dx.doi.org/10.1161/01.str.24.7.940>.
  12. Lai SW, Liao KF, Lai HC et al. Risk of major osteoporotic fracture after cardiovascular disease: a population-based cohort study in Taiwan. J Epidemiol 2013; 23(2): 109–114. Available on: <http://dx.doi.org/10.2188/jea.je20120071>.
  13. Sennerby U, Melhus H, Gedeborg R et al. Cardiovascular diseases and risk of hip fracture. JAMA 2009; 302(15): 1666–1673. Available on: <http://dx.doi.org/10.1001/jama.2009.1463>.
  14. Luan L, Li R, Wang Z et al. Stroke increases the risk of hip fracture: a systematic review and meta-analysis. Osteoporos Int 2016; 27(11): 3149–3154. Available on: <http://dx.doi.org/10.1007/s00198–016–3632–5>.
  15. Ge G, Li J, Wang Q. Heart failure and fracture risk: a meta-analysis. Osteoporos Int 2019; 30(10): 1903–1909. Available on: <http://dx.doi.org/10.1007/s00198–019–05042–2>.
  16. Xu B, Han L, Liu H et al. Cardiovascular disease and hip fracture among older inpatients in Beijing, China. Biomed Res Int 2013; 2013: 493696. Available on: <http://dx.doi.org/10.1155/2013/493696>.
  17. Ungprasert P, Wijarnpreecha K, Thongprayoon C et al. Peripheral arterial disease and risk of hip fracture: A systematic review and meta-analysis of cohort studies. J Postgrad Med 2018; 64(4): 220–225. Available on: <http://dx.doi.org/10.4103/jpgm.JPGM_685_17>
  18. Lin SM, Wang JH, Liang CC et al. Statin Use Is Associated With Decreased Osteoporosis and Fracture Risks in Stroke Patients. J Clin Endocrinol Metab 2018; 103(9): 3439–3448. Available on: <http://dx.doi.org/10.1210/jc.2018–00652>.
  19. Puttnam R, Davis BR, Pressel SL et al. Association of 3 Different Antihypertensive Medications With Hip and Pelvic Fracture Risk in Older Adults: Secondary Analysis of a Randomized Clinical Trial. JAMA Intern Med 2017; 177(1): 67–76. Available on: <http://dx.doi.org/10.1001/jamainternmed.2016.6821>.
  20. Kauppila LI, Polak JF, Cupples LA et al. New indices to classify location, severity and progression of calcific lesions in the abdominal aorta: a 25-year follow-up study. Atherosclerosis 1997; 132(2): 245–250. Available on: <http://dx.doi.org/10.1016/s0021–9150(97)00106–8>.
  21. Schousboe JT, Wilson KE, HangartnerTN. Detection of aortic calcification during vertebral fracture assessment (VFA) compared to digital radiography. PLoS ONE 2007; 2(8): e715. Available on: <http://dx.doi.org/10.1371/journal.pone.0000715>.
  22. Schousboe JT, Wilson KE, Kiel DP. Detection of abdominal aortic calcification with lateral spine imaging using DXA. J Clin Densitom 2006; 9(3): 302–308. Available on: <http://dx.doi.org/10.1016/j.jocd.2006.05.007>.
  23. Setiawati R, Di Chio F, Rahardjo P et al. Quantitative assessment of abdominal aortic calcifications using lateral lumbar radiograph, dual-energy X-ray absorptiometry, and quantitative computed tomography of the spine. J Clin Densitom 2016; 19(2): 242–249. Available on: <http://dx.doi.org/10.1016/j.jocd.2015.01.007>.
  24. Schousboe JT, Lewis JR, Kiel DP. Abdominal aortic calcification on dual-energy X-ray absorptiometry: Methods of assessment and clinical significance. Bone 2017; 104: 91–100. Available on: <http://dx.doi.org/10.1016/j.bone.2017.01.025>.
  25. Farhat GN, Cauley JA, Matthews KA et al. Volumetric BMD and vascular calcification in middle-aged women: the Study of Women’s Health Across the Nation. J Bone Miner Res 2006; 21(12): 1839–1846. Available on: <http://dx.doi.org/10.1359/jbmr.060903>.
  26. Courand PY, Pereira H, Del Giudice C et al. Abdominal Aortic Calcifications Influences the Systemic and Renal Hemodynamic Response to Renal Denervation in the DENERHTN (Renal Denervation for Hypertension) Trial. J Am Heart Assoc 2017; 6(10). pii: e007062. Available on: <http://dx.doi.org/10.1161/JAHA.117.007062>.
  27. Toussaint ND, Lau KK, Strauss BJ et al. Determination and validation of aortic calcification measurement from lateral bone densitometry in dialysis patients. Clin J Am Soc Nephrol 2009; 4(1):119–127. Available on: <http://dx.doi.org/10.2215/CJN.03410708>.
  28. Cecelja M, Hussain T, Greil G et al. Multimodality imaging of subclinical aortic atherosclerosis: relation of aortic stiffness to calcification and plaque in female twins. Hypertension. 2013; 61(3): 609–614. Available on: <http://dx.doi.org/10.1161/HYPERTENSIONAHA.111.00024>.
  29. Confavreux CB, Szulc P, Casey Ret al. Higher serum osteocalcin is associated with lower abdominal aortic calcification progression and longer 10-year survival in elderly men of the MINOS cohort. J Clin Endocrinol Metab 2013; 98(3): 1084–1092. Available on: <http://dx.doi.org/10.1210/jc.2012–3426>.
  30. Samelson EJ, Miller PD, Christiansen C et al. RANKL inhibition with denosumab does not influence 3-year progression of aortic calcification or incidence of adverse cardiovascular events in postmenopausal women with osteoporosis and high cardiovascular risk. J Bone Miner Res 2014; 29(2): 450–457. Available on: <http://dx.doi.org/10.1002/jbmr.2043>.
  31. Tankó LB, Qin G, Alexandersen P et al. Effective doses of ibandronate do not influence the 3-year progression of aortic calcification in elderly osteoporotic women. Osteoporos Int 2005; 16(2):184–190. Available on: <http://dx.doi.org/10.1007/s00198–004–1662-x>.
  32. Miwa Y, Tsushima M, Arima H et al. Pulse pressure is an independent predictor for the progression of aortic wall calcification in patients with controlled hyperlipidemia. Hypertension 2004; 43(3): 536–540. Available on: <http://dx.doi.org/10.1161/01.HYP.0000117153.48029.d1>.
  33. Naves-Díaz M, Cabezas-Rodríguez I, Barrio-Vázquez S et al. Low calcidiol levels and risk of progression of aortic calcification. Osteoporos Int 2012; 23(3):1177–1182. Available on: <http://dx.doi.org/10.1007/s00198–011–1550–0>.
  34. Raggi P, Cooil B, Hadi A et al. Predictors of aortic and coronary artery calcium on a screening electron beam tomographic scan. Am J Cardiol 2003; 91(6): 744–746. Available on: <http://dx.doi.org/10.1016/s0002–9149(02)03421–5>.
  35. Chan JJ, Cupples LA, Kiel DP et al. QCT Volumetric Bone Mineral Density and Vascular and Valvular Calcification: The Framingham Study. J Bone Miner Res 2015; 30(10): 1767–1774. Available on: <http://dx.doi.org/10.1002/jbmr.2530>.
  36. Mori S, Takaya T, Kinugasa M et al. Three-dimensional quantification and visualization of aortic calcification by multidetector-row computed tomography: a simple approach using a volume-rendering method. Atherosclerosis 2015; 239(2): 622–628. Available on: <http://dx.doi.org/10.1016/j.atherosclerosis.2014.12.041>.
  37. Nakayama K, Nakao K, Takatori Y et al. Long-term effect of cinacalcet hydrochloride on abdominal aortic calcification in patients on hemodialysis with secondary hyperparathyroidism. Int J Nephrol Renovasc Dis 2013; 7: 25–33. Available on: <http://dx.doi.org/10.2147/IJNRD.S54731>.
  38. Wada K, Wada Y. Evaluation of aortic calcification with lanthanum carbonate vs. calcium-based phosphate binders in maintenance hemodialysis patients with type 2 diabetes mellitus: an open-label randomized controlled trial. Ther Apher Dial 2014; 18(4): 353–360. Available on: <http://dx.doi.org/10.1111/1744–9987.12153.>.
  39. Paccou J, Mentaverri R, Renard C et al. The relationships between serum sclerostin, bone mineral density, and vascular calcification in rheumatoid arthritis. J Clin Endocrinol Metab 2014; 99(12): 4740–4748. Available on: <http://dx.doi.org/10.1210/jc.2014–2327>.
  40. Szulc P, Samelson EJ, Sornay-Rendu E et al. Severity of aortic calcification is positively associated with vertebral fracture in older men--a densitometry study in the STRAMBO cohort. Osteoporos Int 2013; 24(4): 1177–1184. Available on: <http://dx.doi.org/10.1007/s00198–012–2101-z>.
  41. Flipon E, Liabeuf S, Fardellone P et al. Is vascular calcification associated with bone mineral density and osteoporotic fractures in ambulatory, elderly women? Osteoporos Int 2012; 23(5):1533–1539. Available on: <http://dx.doi.org/10.1007/s00198–011–1762–3>.
  42. Wang TK, Bolland MJ, van Pelt NC et al. Relationships between vascular calcification, calcium metabolism, bone density, and fractures. J Bone Miner Res 2010; 25(12): 2777–2785. Available on: <http://dx.doi.org/10.1002/jbmr.183>.
  43. Aoyagi K, Ross PD, Orloff J et al. Low bone density is not associated with aortic calcification. Calcif Tissue Int 2001; 69(1):20–4. Calcif Tissue Int 2001; 69(1): 20–24. Available on: <http://dx.doi.org/10.1007/s002230020003>.
  44. El Maghraoui A, Rezqi A, Mounach A et al. Vertebral fractures and abdominal aortic calcification in postmenopausal women. A cohort study. Bone 2013; 56(1): 213–219. Available on: <http://dx.doi.org/10.1016/j.bone.2013.05.022>.
  45. Zhou R, Zhou H, Cui M et al. The association between aortic calcification and fracture risk in postmenopausal women in China: the prospective Chongqing osteoporosis study. PLoS One 2014; 9(5): e93882. Available on: <http://dx.doi.org/10.1371/journal.pone.0093882>.
  46. Simon SP, Fodor D, Muntean L et al. Bone mineral density, vertebral fractures and body mass index in postmenopausal women with abdominal aortic calcification. Endocr Res 2014; 39(1): 1–6. Available on: <http://dx.doi.org/10.3109/07435800.2013.794425>.
  47. Szulc P, Blackwell T, Schousboe JT et al. High hip fracture risk in men with severe aortic calcification: MrOS study. J Bone Miner Res 2014; 29(4):968–975. Available on: <http://dx.doi.org/10.1002/jbmr.2085>.
  48. Szulc P, Blackwell T, Kiel DP et al. Abdominal aortic calcification and risk of fracture among older women – The SOF study. Bone 2015; 81: 16–23. Available on: <http://dx.doi.org/10.1016/j.bone.2015.06.019>.
  49. Frye MA, Melton LJ, Bryant SC et al. Osteoporosis and calcification of the aorta. Bone Miner 1992; 19(2): 185–194. Available on: <http://dx.doi.org/10.1016/0169–6009(92)90925–4>.
  50. Bagger YZ, Tankó LB, Alexandersen P et al. Radiographic measure of aorta calcification is a site-specific predictor of bone loss and fracture risk at the hip. J Intern Med 2006; 259(6): 598–605. Available on: <http://dx.doi.org/10.1111/j.1365–2796.2006.01640.x>.
  51. Szulc P, Kiel DP, Delmas PD. Calcifications in the abdominal aorta predict fractures in men: MINOS study. J Bone Miner Res 2008; 23(1): 95–102. Available on: <http://dx.doi.org/10.1359/jbmr.070903>.
  52. Lewis JR, Eggermont CJ, Schousboe JT et al. Association Between Abdominal Aortic Calcification, Bone Mineral Density, and Fracture in Older Women. J Bone Miner Res 2019; 34(11): 2052–2060. Available on: <http://dx.doi.org/10.1002/jbmr.3830.
  53. Schulz E, Arfai K, Liu X et al. Aortic calcification and the risk of osteoporosis and fractures. J Clin Endocrinol Metab 2004; 89(9): 4246–4253. Available on: <http://dx.doi.org/10.1210/jc.2003–030964>.
  54. Kim KJ, Kim KM, Park KH et al. Aortic calcification and bone metabolism: the relationship between aortic calcification, BMD, vertebral fracture, 25-hydroxyvitamin D, and osteocalcin. Calcif Tissue Int 2012; 91(6): 370–378. Available on: <http://dx.doi.org/10.1007/s00223–012–9642–1>.
  55. Hyder JA, Allison MA, Wong N et al. Association of coronary artery and aortic calcium with lumbar bone density: the MESA Abdominal Aortic Calcium Study. Am J Epidemiol 2009; 169(2): 186–194. Available on: <http://dx.doi.org/10.1093/aje/kwn303>.
  56. Li S, Yin L, Li K et al. Relationship of volumetric bone mineral density by quantitative computed tomography with abdominal aortic calcification. Bone 2020; 133: 115226. Available on: <http://dx.doi.org/10.1016/j.bone.2020.115226>.
  57. Divers J, Register TC, Langefeld CD et al. Relationships between calcified atherosclerotic plaque and bone mineral density in African Americans with type 2 diabetes. J Bone Miner Res 2011; 26(7): 1554–1560. Available on: <http://dx.doi.org/10.1002/jbmr.389>.
  58. Chow JT, Khosla S, Melton LJ et al. Abdominal aortic calcification, BMD, and bone microstructure: a population-based study. J Bone Miner Res 2008; 23(10):1601–1612. Available on: <http://dx.doi.org/10.1359/jbmr.080504>.
  59. Kuipers AL, Zmuda JM, Carr JJ et al. Association of volumetric bone mineral density with abdominal aortic calcification in African ancestry men. Osteoporos Int 2014; 25(3):1063–1069. Available on: <http://dx.doi.org/10.1007/s00198–013–2486–3>.
  60. Kiel DP, Kauppila LI, Cupples LA et al. Bone loss and the progression of abdominal aortic calcification over a 25 year period: the Framingham Heart Study. Calcif Tissue Int 2001; 68(5): 271–276. Available on: <http://dx.doi.org/10.1007/bf02390833>.
  61. Naves M, Rodríguez-García M et al. Progression of vascular calcifications is associated with greater bone loss and increased bone fractures. Osteoporos Int 2008; 19(8):1161–1166. Available on: <http://dx.doi.org/10.1007/s00198–007–0539–1>.
  62. Hak AE, Pols HA, van Hemert AM et al. Progression of aortic calcification is associated with metacarpal bone loss during menopause: a population-based longitudinal study. Arterioscler Thromb Vasc Biol 2000; 20(8): 1926–1931. Available on: <http://dx.doi.org/10.1161/01.atv.20.8.1926>.
  63. Bristow SM, Gamble GD, Horne AM et al. Longitudinal changes in bone mineral density, bone mineral content and bone area at the lumbar spine and hip in postmenopausal women, and the influence of abdominal aortic calcification. Bone Rep 2018; 10:100190. Available on: <http://dx.doi.org/10.1016/j.bonr.2018.100190>.
  64. Iwamoto J, Matsumoto H, Takeda T et al. A radiographic study on the associations of age and prevalence of vertebral fractures with abdominal aortic calcification in Japanese postmenopausal women and men. J Osteoporos 2010; 2010: 748380. Available on: <http://dx.doi.org/10.4061/2010/748380>.
  65. El Maghraoui A, Rezqi A, Mounach A et al. Relationship between vertebral fracture prevalence and abdominal aortic calcification in men. Rheumatology (Oxford) 2012; 51(9):1714–1720. Available on: <http://dx.doi.org/10.1093/rheumatology/kes126>.
  66. Iannotti N, Gazzola L, Savoldi A et al. Association between abdominal aortic calcifications, bone mineral density and vertebral fractures in a cohort of HIV-positive patients. J Int AIDS Soc 2014; 17(4 Suppl 3): 19715. Available on: <http://dx.doi.org/10.7448/IAS.17.4.19715>.
  67. Samelson EJ, Cupples LA, Broe KE et al. Vascular calcification in middle age and long-term risk of hip fracture: the Framingham Study. J Bone Miner Res 2007; 22(9): 1449–1454. Available on: <http://dx.doi.org/10.1359/jbmr.070519>.
  68. Värri M, Tuomainen TP, Honkanen R et al. Carotid intima-media thickness and calcification in relation to bone mineral density in postmenopausal women-the OSTPRE-BBA study. Maturitas 2014; 7(2): 304–309. Available on: <http://dx.doi.org/10.1016/j.maturitas.2014.05.017>.
  69. Shaffer JR, Kammerer CM, Rainwater DL et al. Decreased bone mineral density is correlated with increased subclinical atherosclerosis in older, but not younger, Mexican American women and men: the San Antonio Family Osteoporosis Study. Calcif Tissue Int 2007; 81(6): 430–441. Available on: <http://dx.doi.org/10.1007/s00223–007–9079–0>.
  70. Pennisi P, Russo E, Gaudio A et al. The association between carotid or femoral atherosclerosis and low bone mass in postmenopausal women referred for osteoporosis screening. Does osteoprotegerin play a role? Maturitas 2010; 67(4): 358–362. Available on: <http://dx.doi.org/10.1016/j.maturitas.2010.07.013>.
  71. Tamaki J, Iki M, Hirano Y et al. Low bone mass is associated with carotid atherosclerosis in postmenopausal women: the Japanese Population-based Osteoporosis (JPOS) Cohort Study. Osteoporos Int 2009; 20(1): 53–60. Available on: <http://dx.doi.org/10.1007/s00198–008–0633-z>.
  72. Sumino H, Ichikawa S, Kasama S et al. Relationship between carotid atherosclerosis and lumbar spine bone mineral density in postmenopausal women. Hypertens Res 2008; 31(6):1191–1197. Available on: <http://dx.doi.org/10.1291/hypres.31.1191>.
  73. Kim SN, Lee HS, Nam HS et al. Carotid Intima-Media Thickness is Inversely Related to Bone Density in Female but not in Male Patients with Acute Stroke. J Neuroimaging 2016; 26(1): 83–88. Available on: <http://dx.doi.org/10.1111/jon.12284>.
  74. Ajeganova S, Gustafsson T, Jogestrand T et al. Bone mineral density and carotid atherosclerosis in systemic lupus erythematosus: a controlled cross-sectional study. Arthritis Res Ther 2015; 17: 84. Available on: <http://dx.doi.org/10.1186/s13075–015–0595–4>.
  75. Fodor D, Bondor C, Albu A et al. Relation between intima-media thickness and bone mineral density in postmenopausal women: a cross-sectional study. Sao Paulo Med J 2011; 129(3): 139–145. Available on: <http://dx.doi.org/10.1590/s1516–31802011000300004>.
  76. de Almeida Pereira Coutinho M, Bandeira E, de Almeida JM et al. Low Bone Mass is Associated with Increased Carotid Intima Media Thickness in Men with Type 2 Diabetes Mellitus. Clin Med Insights Endocrinol Diabetes 2013; 6:1–6. Available on: <http://dx.doi.org/10.4137/CMED.S11843>.
  77. Campos-Staffico AM, Freitas WM, Carvalho LSF et al. Lower bone mass is associated with subclinical atherosclerosis, endothelial dysfunction and carotid thickness in the very elderly. Atherosclerosis 2020; 292: 70–74. Available on: <http://dx.doi.org/10.1016/j.atherosclerosis.2019.11.007>.
  78. Yamada S, Inaba M, Goto H et al. Associations between physical activity, peripheral atherosclerosis and bone status in healthy Japanese women. Atherosclerosis 2006; 188(1): 196–202. Available on: <http://dx.doi.org/10.1016/j.atherosclerosis.2005.10.036>.
  79. Montalcini T, Emanuele V, Ceravolo R et al. Relation of low bone mineral density and carotid atherosclerosis in postmenopausal women. Am J Cardiol 2004; 94(2): 266–269. Available on: <http://dx.doi.org/10.1016/j.amjcard.2004.03.083>.
  80. Mendoza-Pinto C, García-Carrasco M, Jiménez-Hernández M et al. Carotid atherosclerosis is not associated with lower bone mineral density and vertebral fractures in patients with systemic lupus erythematosus. Lupus 2015; 24(1):25–31. Available on: <http://dx.doi.org/10.1177/0961203314548247>.
  81. Jiang Y, Fan Z, Wang Y et al. Low Bone Mineral Density Is Not Associated with Subclinical Atherosclerosis: A Population-Based Study in Rural China. Cardiology. 2018; 141(2): 78–87. Available on: <http://dx.doi.org/10.1159/000493166>.
  82. Wang YQ, Yang PT, Yuan H et al. Low bone mineral density is associated with increased arterial stiffness in participants of a health records based study. J Thorac Dis 2015; 7(5): 790–798. Available on: <http://dx.doi.org/10.3978/j.issn.2072–1439.2015.04.47>.
  83. Uyama O, Yoshimoto Y, Yamamoto Y et al. Bone changes and carotid atherosclerosis in postmenopausal women. Stroke 1997; 28(9): 1730–1732. Available on: <http://dx.doi.org/10.1161/01.str.28.9.1730>.
  84. Barzilay JI, Buzkova P, Cauley JA et al. The associations of subclinical atherosclerotic cardiovascular disease with hip fracture risk and bone mineral density in elderly adults. Osteoporos Int 2018; 29(10): 2219–2230. Available on: <http://dx.doi.org/10.1007/s00198–018–4611–9>.
  85. Hyder JA, Allison MA, Barrett-Connor E et al. Bone mineral density and atherosclerosis: the Multi-Ethnic Study of Atherosclerosis, Abdominal Aortic Calcium Study. Atherosclerosis 2010; 209(1): 283–289. Available on: <http://dx.doi.org/10.1016/j.atherosclerosis.2009.09.011>.
  86. Jørgensen L, Joakimsen O, Rosvold Berntsen GK et al. Low bone mineral density is related to echogenic carotid artery plaques: a population-based study. Am J Epidemiol 2004; 160(6): 549–556. Available on: <http://dx.doi.org/10.1093/aje/kwh252>.
  87. Iwamoto Y, Uchida K, Sugino N et al. Osteoporosis, osteoporotic fractures, and carotid artery calcification detected on panoramic radiographs in Japanese men and women. Oral Surg Oral Med Oral Pathol Oral Radiol 2016; 121(6): 673–680. Available on: <http://dx.doi.org/10.1016/j.oooo.2016.02.006>.
  88. Carr JJ, Register TC, Hsu FC et al. Calcified atherosclerotic plaque and bone mineral density in type 2 diabetes: the diabetes heart study. Bone 2008; 42(1):43–52. Available on: <http://dx.doi.org/10.1016/j.bone.2007.08.023>.
  89. Kim SH, Kim YM, Cho MA et al. Echogenic carotid artery plaques are associated with vertebral fractures in postmenopausal women with low bone mass. Calcif Tissue Int 2008; 82(6): 411–417. Available on: <http://dx.doi.org/10.1007/s00223–008–9141–6>.
  90. Hmamouchi I, Allali F, Khazzani H et al. Low bone mineral density is related to atherosclerosis in postmenopausal Moroccan women. BMC Public Health 2009; 9: 388. Available on: <http://dx.doi.org/10.1186/1471–2458–9-388>.
  91. Hamada M, Kajita E, Tamaki J et al. Decreased bone mineral density and osteoporotic fractures are associated with the development of echogenic plaques in the carotid arteries over a 10-year follow-up period: The Japanese Population-based Osteoporosis (JPOS) Cohort Study. Maturitas 2020; 131: 40–47. Available on: <http://dx.doi.org/10.1016/j.maturitas.2019.10.010>.
  92. Jørgensen L, Joakimsen O, Mathiesen EB et al. Carotid plaque echogenicity and risk of nonvertebral fractures in women: a longitudinal population-based study. Calcif Tissue Int 2006; 79(4):207–213. Available on: <http://dx.doi.org/10.1007/s00223–006–0071-x>.
  93. Liu D, Chen L, Dong S et al. Bone mass density and bone metabolism marker are associated with progression of carotid and cardiac calcified plaque in Chinese elderly population. Osteoporos Int 2019; 30(9): 1807–1815. Available on: <http://dx.doi.org/10.1007/s00198–019–05031–5>.
  94. Frysz M, Deere K, Lawlor DA et al. Bone Mineral Density Is Positively Related to Carotid Intima-Media Thickness: Findings From a Population-Based Study in Adolescents and Premenopausal Women. J Bone Miner Res 2016; 31(12): 2139–2148. Available on: <http://dx.doi.org/10.1002/jbmr.2903>.
  95. Shaffer JR, Kammerer CM, Rainwater DL et al. Decreased bone mineral density is correlated with increased subclinical atherosclerosis in older, but not younger, Mexican American women and men: the San Antonio Family Osteoporosis Study. Calcif Tissue Int 2007; 81(6): 430–441. Available on: <http://dx.doi.org/10.1007/s00223–007–9079–0>.
  96. Sinnott B, Syed I, Sevrukov A et al. Coronary calcification and osteoporosis in men and postmenopausal women are independent processes associated with aging. Calcif Tissue Int 2006; 78(4): 195–202. Available on: <http://dx.doi.org/10.1007/s00223–005–0244-z>.
  97. Shen H, Bielak LF, Streeten EA et al. Relationship between vascular calcification and bone mineral density in the Old-order Amish. Calcif Tissue Int 2007; 80(4): 244–250. Available on: <http://dx.doi.org/10.1007/s00223–007–9006–4>.
  98. Yoon YE, Kim KM, Han JS et al. Prediction of Subclinical Coronary Artery Disease With Breast Arterial Calcification and Low Bone Mass in Asymptomatic Women: Registry for the Women Health Cohort for the BBC Study. JACC Cardiovasc Imaging 2019; 12(7 Pt 1): 1202–1211. Available on: <http://dx.doi.org/10.1016/j.jcmg.2018.07.004>.
  99. Wilund KR, Tomayko EJ, Evans EM et al. Physical activity, coronary artery calcium, and bone mineral density in elderly men and women: a preliminary investigation. Metabolism 2008; 57(4): 584–591. Available on: <http://dx.doi.org/10.1016/j.metabol.2007.11.024>.
  100. Liu Y, Fu S, Bai Y et al. Relationship between age, osteoporosis and coronary artery calcification detected by high-definition computerized tomography in Chinese elderly men. Arch Gerontol Geriatr 2018; 79: 8–12. Available on: <http://dx.doi.org/10.1016/j.archger.2018.07.002>.
  101. Lin T, Liu JC, Chang LY et al. Association between coronary artery calcification using low-dose MDCT coronary angiography and bone mineral density in middle-aged men and women. Osteoporos Int 2011; 22(2): 627–634. Available on: <http://dx.doi.org/10.1007/s00198–010–1303–5>.
  102. Campos-Obando N, Kavousi M, Roeters van Lennep JE et al. Bone health and coronary artery calcification: The Rotterdam Study. Atherosclerosis 2015; 241(1): 278–283. Available on: <http://dx.doi.org/10.1016/j.atherosclerosis.2015.02.013>.
  103. Kim KI, Suh JW, Choi SY et al. Is reduced bone mineral density independently associated with coronary artery calcification in subjects older than 50 years? J Bone Miner Metab 2011; 29(3): 369–376. Available on: <http://dx.doi.org/10.1007/s00774–010–0229–5>.
  104. Escota G, Baker J, Bush T et al. Aging Attenuates the Association Between Coronary Artery Calcification and Bone Loss Among HIV-Infected Persons. J Acquir Immune Defic Syndr 2019: 82(1): 46–50. Available on: <http://dx.doi.org/10.1097/QAI.0000000000002092>.
  105. Lee HT, Shin J, Lim YH et al. The relationship between coronary artery calcification and bone mineral density in patients according to their metabolic syndrome status. Korean Circ J 2011; 41(2): 76–82. Available on: <http://dx.doi.org/10.4070/kcj.2011.41.2.76>.
  106. Bakhireva LN, Barrett-Connor EL, Laughlin GA et al. Differences in association of bone mineral density with coronary artery calcification in men and women: the Rancho Bernardo Study. Menopause 2005; 12(6): 691–698. Available on: <http://dx.doi.org/10.1097/01.gme.0000184422.50696.ef>.
  107. Lee SH, Park SJ, Kim KN et al. Coronary Calcification Is Reversely Related with Bone and Hair Calcium: The Relationship among Different Calcium Pools in Body. J Bone Metab 2016; 23(4): 191–197. Available on: <http://dx.doi.org/10.11005/jbm.2016.23.4.191>.
  108. Xu R, Yang HN, Li YQ et al. Association of coronary artery calcium with bone mineral density in postmenopausal women. Coron Artery Dis 2016; 27(7): 586–91. Available on: <http://dx.doi.org/10.1097/MCA.0000000000000402>.
  109. Choi SH, An JH, Lim S et al. Lower bone mineral density is associated with higher coronary calcification and coronary plaque burdens by multidetector row coronary computed tomography in pre- and postmenopausal women. Clin Endocrinol (Oxf) 2009; 71(5): 644–651. Available on: <http://dx.doi.org/10.1111/j.1365–2265.2009.03535.x>.
  110. Barengolts EI, Berman M, Kukreja SC et al. Osteoporosis and coronary atherosclerosis in asymptomatic postmenopausal women. Calcif Tissue Int 1998; 62(3): 209–213. Available on: <http://dx.doi.org/10.1007/s002239900419>.
  111. Wiegandt YL, Sigvardsen PE, Sørgaard MH et al. The relationship between volumetric thoracic bone mineral density and coronary calcification in men and women – results from the Copenhagen General Population Study. Bone 2019; 121: 116–120. Available on: <http://dx.doi.org/10.1016/j.bone.2019.01.010>.
  112. Beckman JP, Camp JJ, Lahr BD, Bailey KR, Kearns AE, Garovic VD, Jayachandran M, Miller VM, Holmes DR 3rd. Pregnancy history, coronary artery calcification and bone mineral density in menopausal women. Climacteric. 2018 21: 53–59. Available on: <http://dx.doi.org/10.1080/13697137.2017.1406910>.
  113. Ahmadi N, Mao SS, Hajsadeghi F et al. The relation of low levels of bone mineral density with coronary artery calcium and mortality. Osteoporos Int 2018; 29(7): 1609–1616. Available on: <http://dx.doi.org/10.1007/s00198–018–4524–7>.
  114. Therkildsen J, Winther S, Nissen L et al. Sex Differences in the Association Between Bone Mineral Density and Coronary Artery Disease in Patients Referred for Cardiac Computed Tomography. J Clin Densitom. 2019; pii: S1094–6950(19)30143-X. Available on: <http://dx.doi.org/10.1016/j.jocd.2019.09.003>.
  115. Miyabara Y, Camp J, Holmes D et al. Coronary arterial calcification and thoracic spine mineral density in early menopause. Climacteric 2011; 14(4): 438–444. Available on: <http://dx.doi.org/10.3109/13697137.2010.537409>.
  116. van Dort MJ, Driessen JHM, Geusens P et al. Association between vertebral fractures and coronary artery calcification in current and former smokers in the ECLIPSE cohort. Osteoporos Int 2019; 31(2): 297–305. Available on: <http://dx.doi.org/10.1007/s00198–019–05218-w>.
  117. Szulc P. Abdominal aortic calcification: A reappraisal of epidemiological and pathophysiological data. Bone 2016; 84: 25–37. Available on: <http://dx.doi.org/10.1016/j.bone.2015.12.004>.
  118. Le Manach Y, Collins G, Bhandari M et al. Outcomes After Hip Fracture Surgery Compared With Elective Total Hip Replacement. JAMA 2015; 314(11): 1159–1166. Available on: <http://dx.doi.org/10.1001/jama.2015.10842>.
  119. [FOCUS Trial Collaboration]. Effects of fluoxetine on functional outcomes after acute stroke (FOCUS): a pragmatic, double-blind, randomised, controlled trial. Lancet 2019; 393(10168): 265–274. Available on: <http://dx.doi.org/10.1016/S0140–6736(18)32823-X>.
  120. Lin SM, Yang SH, Liang CC et al. Proton pump inhibitor use and the risk of osteoporosis and fracture in stroke patients: a population-based cohort study. Osteoporos Int 2018; 29(1): 153–162. Available on: <http://dx.doi.org/10.1007/s00198–017–4262–2>.
Štítky
Biochemie Dětská gynekologie Dětská radiologie Dětská revmatologie Endokrinologie Gynekologie a porodnictví Interní lékařství Ortopedie Praktické lékařství pro dospělé Radiodiagnostika Rehabilitační a fyzikální medicína Revmatologie Traumatologie Osteologie
Přihlášení
Zapomenuté heslo

Zadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.

Přihlášení

Nemáte účet?  Registrujte se

#ADS_BOTTOM_SCRIPTS#