Effect of vitamin K on musculoskeletal health in postmenopausal women


Authors: Rosa Jan 1;  Stančíková Mária 2
Authors place of work: Osteocentrum Affidea Praha, s. r. o. 1;  Národný ústav reumatických chorôb Piešťany 2
Published in the journal: Clinical Osteology 2019; 24(1): 5-13
Category: Přehledové články

Summary

Vitamin K plays an important role not only in blood clotting, but also in the regulation of mineralization of bones and cartilage. It appears that vitamin K needs for musculoskeletal health are higher than currently recommended daily doses that are optimal for vitamin K1 but suboptimal for vitamin K2. Epidemiological and observational studies have shown that low vitamin K content in the diet and/or serum is associated with the risk of fracture and osteoarthritis in elderly. However, the randomized controlled intervention trials with vitamin K supplementation in Caucasian population are not convincing regarding the increase in bone mineral density at important regions of interest. Combination of vitamin K and D appears to be effective in osteoporosis. Long-term randomized controlled clinical trials with a large number of subjects and well-defined criteria for bone and joint health are required to confirm current observations.

Keywords:

osteoporosis – osteoarthritis – bone – cartilage – vitamin K


Zdroje
  1. Shearer MJ, Newman P. Metabolism and cell biology of vitamin K. Thromb Haemost 2008; 100(4): 530–547.
  2. Booth SL, Suttie JW. Dietary intake and adequacy of vitamin K. J Nutr 1998; 128(5): 785–788. Dostupné z DOI: <http: //dx.doi.org/10.1093/jn/128.5.785>.
  3. Shearer MJ, Xueyan F, Booth SL. Vitamin K nutrition, metabolism, and requirements: current concepts and future research. Adv Nutr 2012; 3(2): 182–195. Dostupné z DOI: <http: //dx.doi.org/10.3945/an.111.001800>.
  4. Hirota Y, Tsugawa N, Nakagawa K et al. Menadione (vitamin K3) is a catabolic product of oral phylloquinone (vitamin K1) in the intestine and a circulating precursor of tissue menaquinone-4 (vitamin K2) in rats. J Biol Chem 2013; 288(46): 33071–33080. Dostupné z DOI: <http: //dx.doi.org/10.1074/jbc.M113.477356>.
  5. Schugers LJ, Vermeer C. Determination of phylloquinone and menaquinones in food: effect of food matrix on circulating vitamin K concentrations. Haemostasis 2000; 30(6): 298–307. Dostupné z DOI: <http: //dx.doi.org/10.1159/000054147>.
  6. Beulens JWJ, Booth SL, van den Heuvel EGHM et al. The role of menaquinones (vitamin K2) in human health. Br J Nutrition 2013; 110(8): 1357–1368. Dostupné z DOI: <http: //dx.doi.org/10.1017/S0007114513001013>.
  7. Shearer MJ, Xueyan F, Booth SL. Vitamin K nutrition, metabolism, and requirements: current concepts and future research. Adv Nutr 2012; 3(2): 182–195. Dostupné z DOI: <http: //dx.doi.org/10.3945/an.111.001800>.
  8. Vermeer C. Vitamin K: the effect on health beyond coagulation – an overview. Food Nutr Res 2012; 56. Dostupné z DOI: <http: //dx.doi.org/10.3402/fnr.v56i0.5329>.
  9. Wen L, Chen J, Duan L, Li S. Vitamin K-dependent proteins involved in bone and cardiovascular health (Review). Mol Med Rep 2018; 18(1): 3–15. Dostupné z DOI: <http: //dx.doi.org/10.3892/mmr.2018.8940>.
  10. Merle B, Garnero P. The multiple facets of periostin in bone metabolism. Osteporosis Int 2012; 23(4): 1199–1212. Dostupné z DOI: <http: //dx.doi.org/10.1007/s00198–011–1892–7>.
  11. Schurgers LJ, Teunissen KJ, Hamulyák K et al. Vitamin K-containing dietary supplements: comparison of synthetic vitamin K1 and natto-derived menaquinone-7. Blood 2007; 109(8): 3279–3283. Dostupné z DOI: <http: //dx.doi.org/10.1182/blood-2006–08–040709>.
  12. Koshihara Y, Hoshi K, Okawara R et al. Vitamin K stimulates osteoblastogenesis and inhibits osteclastogenesis in himan bone marrow cell culture. J Endocrinology 2003; 176(3): 339–348.
  13. Tabb MM, Sun A, Zhou C et al. Vitamin K2 regulation of bone homeostasis is mediated by the steroid and xenobiotic receptor SXR. J Biol Chem 2003; 278(45): 43919–43927. Dostupné z DOI: <http: //dx.doi.org/10.1074/jbc.M303136200>.
  14. Fusaro M, Gallieni M, Rizzo MA et al. Vitamin K plasma levels determination in human health. Clin Chem Lab Med 2017; 55(6): 789–799. Dostupné z DOI: <http: //dx.doi.org/10.1515/cclm-2016–0783>.
  15. Klapkova E, Cepova J, Dunovska K et al. Determination of vitamins K1, MK4, and MK7 in human serum of postmenopausal women by HPLC with fluorescence detection. J Clin Lab Anal 2018; 32(5): e22381. Dostupné z DOI: <http: //dx.doi.org/10.1002/jcla.22381>.
  16. Binkley NC, krueger DC, Kawahara TN et al. A high phylloquinone intake is required to achieve maximal ostecalcin gamma-carboxylation. Am J Clin Nutr 2002; 76(5): 1055–1060. Dostupné z DOI: <http: //dx.doi.org/10.1093/ajcn/76.5.1055>.
  17. Gunberg CM, Nieman SD, Abrams S et al. Vitamin K status and bone health: an analysis of methods for determination of undercarboxylated osteocalcin. J Clin Endocrinol Metab 1998; 83(9): 3258–3266. Dostupné z DOI: <http: //dx.doi.org/10.1210/jcem.83.9.5126>.
  18. Schwalfenberg GK. Vitamin K1 and K2: The emerging group vitamins required for human healrh. J Nutr Metab 2017; 2017: 6254836. Dostupné z DOI: <http: //dx.doi.org/10.1155/2017/6254836>.
  19. Traber MG. Vitamin E and K interactions – a 50 year-old problem. Nutr Rev 2008; 66(11): 624–629. Dostupné z DOI: <http: //dx.doi.org/10.1111/j.1753–4887.2008.00123.x>.
  20. Turck D, Breson JL, Burlingame B et al. Dietary reference values for vitamin K. EFSA J 2017; 15(5): e04780. Dostupné z DOI: <https: //doi.org/10.2903/j.efsa.2017.4780>.
  21. Orimo H, Nakumara T, Hosoi T et al. Japanese 2011 guidelines for prevention and treatment of osteoporosis – executive summary. Arch Osteoporos 2012; 7: 3–20. Dostupné z DOI: <http: //dx.doi.org/10.1007/s11657–012–0109–9>.
  22. Gröber U, Reichrath J, Holick MF et al. Vitamin K: an old vitamin in a new perspective. Dermato-Endocrinology 2014; 6(1): e968490. Dostupné z DOI: <http: //dx.doi.org/10.4161/19381972.2014.968490>.
  23. Štěpán J. Význam vitaminu K pro kvalitu kosti a pro kalcifikované tkáně. Prakt Lék 2005; 85(6): 326–330.
  24. Boskey AL, Gadaleta S, Gundberg C et al. Fourier transform infrared microspectropic analysis of bones of osteocalcin-deficient mice provides insight into the function of osteocalcin. Bone 1998; 23(3): 187–196.
  25. Iwamoto J, Takeda T, Sato Y. Effects of vitamin K2 on osteoporosis. Curr Pharm Des 2004; 10(21): 2557–2576.
  26. Pettifor JM, Benson R. Congenital malformations associated with the administration of oral anticoagulants during pregnancy. J Pediatr 1975; 86(3): 459–462.
  27. Booth SL, Tucker KI, Chen H et al. Dietary vitamin K intakes are associated with hip fracture but not with bone mineral density in elderly men and women. Am J Clin Nutr 2000; 71(5): 1201–1208. Dostupné z DOI: <http: //dx.doi.org/10.1093/ajcn/71.5.1201>.
  28. Price PA, Parthemore JG, Deftos LJ. New biochemical marker for bone metabolism. Measurement by radioimmunoassay of bone GLA protein in the plasma of normal subjects and patients with bone disease. J Clin Invest 1980; 66(5): 878–883. Dostupné z DOI: <http: //dx.doi.org/10.1172/JCI109954>.
  29. Vermeer C. Vitamin K: the effect on health beyond coagulation – an overview. Food Nutr Res 2012; 56. Dostupné z DOI: <http: //dx.doi.org/10.3402/fnr.v56i0.5329>.
  30. Assessment of fracture risk and its application to screening for postmenopausal osteoporosis. Report of a WHO Study Group. World Health Organ Tech Rep Ser 1994; 843: 1–129.
  31. Stančíková M, Rovenský J, Stančík R. Význam vitaminu K pri osteoporóze a kardiovaskulárnych ochoreniach. Int Medicína 2015; 15(2): 103–108.
  32. Kaneki M, Hodges SJ, Hosoi T et al. Japanese fermented soyabean food as the major determinant of the large geographic difference in circulating levels of vitamin K2: possible implications for hip- fracture risk. Nutrition 2001; 17(4): 315–321. Erratum in Nutrition 2006; 22(10): 1075. Hedges SJ [corrected to Hodges, S J].
  33. Leukinen H, Kakonen SM, Pettersson K et al. Strong prediction of fractures among older adults by the ratio of carboxylated to total serum osteocalcin. J Bone Miner Res 2000; 15(12): 2473–2478. Dostupné z DOI: <http: //dx.doi.org/10.1359/jbmr.2000.15.12.2473>.
  34. Sugiyama T, Kawai S. Carboxylation of osteocalcin may be related to bone quality: a possible mechanism of bone fracture prevention by vitamin K. J Bone Miner Metab 2001; 19(3): 146–149.
  35. Feskanich D, Weber P, Willett WC et al. Vitamin K intake and hip fractures in women: a prospective study. Am J Clin Nutr 1999; 69(1): 74–79. Dostupné z DOI: <http: //dx.doi.org/10.1093/ajcn/69.1.74>.
  36. Bolton-Smith C, McMurdo MET, Paterson CR et al. Two-year randomized controlled trial of vitamin K1 (phylloquinone) and vitamin D3 plus calcium on the bone health of older women. J Bone Miner Res 2007; 22(4): 509–519. Dostupné z DOI: <http: //dx.doi.org/10.1359/jbmr.070116>.
  37. Booth SL, Dallal G, Shea MK et al. Effect of vitamin K supplementation on bone loss in elderly men and women. J Clin Endocrinol Metab 2008; 93(4): 1217–1223. Dostupné z DOI: <http: //dx.doi.org/10.1210/jc.2007–2490>.
  38. Braam LA, Knapen MH,Geusens P et al. Vitamin K1 supplementation retards bone loss in postmenopausal women between 50 and 60 years of age. Calcif Tissue Int 2003; 73(1): 21–26.
  39. Cheung AM, Tile L, Lee Y et al. Vitamin K supplementation in postmenopausal women with osteopenia (ECKO trial): a randomized controlled trial. PLoS Med 2008; 5(10): e196. Dostupné z DOI: <http: //dx.doi.org/10.1371/journal.pmed.0050196>. Erratum in PLoS Med 2008; 5(12): e247.
  40. Orimo H, Fujita T, Onomura T et al. Clinical evaluation of Ea-0167 (Menatetrenone) in the treatment of osteoporosis. Clin Eval (Tokyo) 1992; 20(1): 45–100.
  41. Shiraki M, Shiraki Y, Aoki C et al. Vitamin K2 (menatetrenone) effectively prevents fractures and sustains lumbar bone mineral density in osteoporosis. J Bone Miner Res 2000; 15(3): 515–521. Dostupné z DOI: <http: //dx.doi.org/10.1359/jbmr.2000.15.3.515>.
  42. Cockayne S, Adamson J, Lanham-New S et al. Vitamin K and the prevention of fractures: systemic review and meta-analysis of randomized controlled trials. Arch Intern Med 2006; 166(12): 1256–1261. Dostupné z DOI: <http: //dx.doi.org/10.1001/archinte.166.12.1256>. Erratum in Caution of Conclusions of a Meta-analysis Including Problematic Trials. [JAMA Intern Med 2018].
  43. Fang Y, Hu C, Tao X et al. Effect of vitamin K on bone mineral density: a meta-analysis of randomized controlled trials. J Bone Miner Metab 2012 ; 30(1): 60–68. Dostupné z DOI: <http: //dx.doi.org/10.1007/s00774–011–0287–3>.
  44. Iwamoto J. Vitamin K2 therapy for postmenopausal osteoporosis. Nutrients 2014; 6(5): 1971–1980. Dostupné z DOI: <http: //dx.doi.org/10.3390/nu6051971>.
  45. Huang ZB, Wan SL, Lu YJ et al. Does vitamin K2 play a role in the prevention and treatment of osteoporosis for postmenopausal women: a meta-analysis of randomized controlled trials. Osteoporos Int 2015; 26(3): 1175–1186. Dostupné z DOI: <http: //dx.doi.org/10.1007/s00198–014–2989–6>.
  46. Knapen MH, Schurgers LJ, Vermeer C. Vitamin K2 supplementation improves hip bone geometry and bone strength indices in postmenopausal women. Osteoporos Int 2007; 18(7): 963–972. Dostupné z DOI: <http: //dx.doi.org/10.1007/s00198–007–0337–9>.
  47. Emaus N, Gjesdal CG, Almås B et al. Vitamin K2 supplementation does not influence bone loss in early menopasal women: a randomised double-blind placebo-controlled trial. Osteoporos Int 2010; 21(10): 1731–1740. Dostupné z DOI: <http: //dx.doi.org/10.1007/s00198–009–1126–4>.
  48. Knapen MH, Drummen ME, Smit E et al. Three-year low-dose menaquinone-7 supplementation helps decrease bone loss in healthy postmenopausal women. Osteoporos Int 2013; 24(9): 2499–2507. Dostupné z DOI: <http: //dx.doi.org/10.1007/s00198–013–2325–6>.
  49. Sasaki H, Miyakoshi N, Kasukawa Y et al. Effect of combination treatment with alendronate and vitamin K(2) on bone mineral density and strength in ovariectomized mice. J Bone Miner Metab 2010; 28(4): 403–409. Dostupné z DOI: <http: //dx.doi.org/10.1007/s00774–009–0148–5>.
  50. Je SH, Joo NS, Choi BH et al. Vitamin K supplementation along with vitamin D and calcium reduced serum concentration of undercarboxylated osteocalcin while increasing bone mineral density in Korean postmenopausal women over sixty-years-old. J Korean Med Sci 2011; 26(8): 1093–1098. Dostupné z DOI: <http: //dx.doi.org/10.3346/jkms.2011.26.8.1093>.
  51. Iwamoto J, Zakeda T, Ichimura S. Effect of combined administration of vitamin D3 and vitamin K2 on bone mineral density of the lumbar spine in postmenopausal women with osteoporosis. J Orthop Sci 2000; 5(6): 546–551.
  52. Yonemura K, Kimura M, Miyaji T et al. Short-term effect of vitamin K administration on prednisolone-induced loss of bone mineral density in patients with chronic glomerulonephritis. Calcif Tissue Int 2000; 66(2): 123–128.
  53. Inoue T, Sugiyama T, Matsubara T et al. Inverse correlation between the changes of lumbar bone mineral density and serum undercarboxylated osteocalcin after vitamin K2 (menatetrenone) treatment in children treated with glucocorticoid and alfacalcidol. Endocr J 2001; 48(1): 11–18.
  54. Finnes TE, Lofthus CM, Meyer HE et al. A combination of low serum concentration of vitamin K1 and D is associated with increased risk of hip fractures in elderly Norwegians: a NOREPOS study. Osteoporos Int 2016; 27(4): 1645–1652. Dostupné z DOI: <http: //dx.doi.org/10.1007/s00198–015–3435–0>.
  55. Van Ballegooijen AJ, Pilz S, Tomashitz A et al. The synergistic interplay between vitamins D and K for bone and cardiovascular health: A narrative review. Int J Endocrinology 2017; 2017: 7454376. Dostupné z DOI: <https: //doi.org/10.1155/2017/7454376>.
  56. Matsunaga S, Ito H, Sakou T. The effect of vitamin K and D supplementation on ovariectomy-induced bone loss. Calcified Tissue Int 1999; 65(4): 285–289.
  57. Kerner SA, Scott RA, Pike JW. Sequence elements in the human osteocalcin gene confer basal activation and inducible response to hormonal vitamin D3. Proc Natl Acad Sci USA 1989; 86(12): 4455–4459. Dostupné z DOI: <http: //dx.doi.org/10.1073/pnas.86.12.4455>.
  58. Gigante A, Torcianti M, Boldrine E et al. Vitamin K and D association stimulates in vitro osteoblast differentiation of fracture site derived human mesenchymal stem cells. J Biol Regul Homeost Agents 2008; 22(1): 35–44.
  59. Hunter DJ. Imaging insight on the epidemiology and pathophysiology of osteoarthritis. Rheum Dis Clin North Am 2009; 35(3): 447–471. Dostupné z DOI: <http: //dx.doi.org/10.1016/j.rdc.2009.08.001>.
  60. Wallin R, Schurgers LJ, Loeser RF. Biosynthesis of the vitamin K-dependent matrix Gla protein (MGP) in chondrocytes: a fetuin-MGP protein complex is assembled in vesicles shed from normal but not from osteoarthritic chondrocytes. Osteoarthritis Cartilage 2010; 18(3): 1096–1103. Dostupné z DOI: <http: //dx.doi.org/10.1016/j.joca.2010.05.013>.
  61. Misra D, Booth SL, Crosier MD et al. Matrix Gla protein polymorphism, but not concentrations, is associated with radiographic hand osteoarthritis. J Rheumatol 2011; 38(9): 1960–1965. Dostupné z DOI: <http: //dx.doi.org/10.3899/jrheum.100985>.
  62. Cavaco S, Viegas CS, Rafael MS et al. Gla-rich protein is involved in the cross-talk between calcification and inflammation in osteoarthritis. Cell Mol Life Sci 2016; 73(5): 1051–1065. Dostupné z DOI: <http: //dx.doi.org/10.1007/s00018–015–2033–9>.
  63. Shea MK, Kritchevsky SB, Nevitt M et al. The association between vitamin K status and knee osteoarthritis features in older adults: The Health, Aging and Body Composition Study. Osteoarthritis Cartilage 2015; 23(3): 370–378. Dostupné z DOI: <http: //dx.doi.org/10.1016/j.joca.2014.12.008>.
  64. Oka H, Akune T, Muraki S et al. Association of low dietary vitamin K intake with radiographic knee osteoarthritis in the Japanese elderly population: dietary survey in a population-based cohort of the ROAD study. J Orthop Sci 2009; 14(6): 687–692. Dostupné z DOI: <http: //dx.doi.org/10.1007/s00776–009–1395-y>.
  65. Naogi T, Felson DT, Sarno R et al. Vitamin K in hand osteoarthritis: results from randomised clinical trial. Ann Rheum Dis 2008; 67(11): 1570–1573. Dostupné z DOI: <http: //dx.doi.org/10.1136/ard.2008.094771>.
  66. Misra D, Booth SL, Tolstykh I et al. Vitamin K deficiency is associated with incident knee osteoarthritis. Am J Med 2013; 126(3): 243–248. Dostupné z DOI: <http: //dx.doi.org/10.1016/j.amjmed.2012.10.011>.
  67. Ebina K, Shi K, Hirao M et al. Vitamin K2 administration is associated with decreased disease activity in patients with rheumatoid arthritis. Mod Rheumatol 2013; 23(5): 1001–1007. Dostupné z DOI: <http: //dx.doi.org/10.1007/s10165–012–0789–4>.
  68. Abdel-Rahman MS, Alkady EAM, Ahmed S. Menaquinone-7 as a novel pharmacological therapy in the treatment of rheumatoid arthritis: A clinical study. Eur J Pharmacol 2015; 761: 273–278. Dostupné z DOI: <http: //dx.doi.org/10.1016/j.ejphar.2015.06.014.
  69. Ronden JN, Groenen-van Dooren MM, Hornstra G et al. Modulation of arterial thrombosis tendency in rats by vitamin K and its side chain. Atherosclerosis 1997; 132(1): 61–67.
  70. Westenfeld R, Krueger T, Schlieper G et al. Effect of vitamin K2 supplementation on functional vitamin K deficiency in hemodialysis patients: a randomized trial. Am J Kidney Dis 2012; 59(2): 186–195. Dostupné z DOI: <http: //dx.doi.org/10.1053/j.ajkd.2011.10.041>.
Štítky
Biochemie Dětská gynekologie Dětská radiologie Dětská revmatologie Endokrinologie Gynekologie a porodnictví Interní lékařství Ortopedie Praktické lékařství pro dospělé Radiodiagnostika Rehabilitační a fyzikální medicína Revmatologie Traumatologie Osteologie
Přihlášení
Zapomenuté heslo

Zadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.

Přihlášení

Nemáte účet?  Registrujte se